Raphaël DUMAS
Bron
Bâtiment: Building: L3
25, avenue François Mitterrand - Case24 - F-69675 Bron Cedex
Bureau: Office: 285
Raphaël DUMAS
Senior Researcher
Ingénieur en mécanique (INSA Lyon, 1998) et Docteur en mécanique (ENSAM Paris, 2002), il était Maître de Conférences à l'Université Lyon 1 jusqu'en 2012. Ses thématiques de recherche portent sur la modélisation du système ostéo-articulaire, de type multi-corps rigides, appliquée à l’étude des pathologies articulaires et aux troubles de la posture et de la locomotion.
Engineer and M. Sc. in mechanics (INSA de Lyon, 1998), Ph.D. in mechanics 2002 (ENSAM de Paris, 2002), he was Associate Professor at the Université Lyon 1 until 2012. His research interest is in three-dimensional multi-body modelling of the human musculoskeletal system applied to joint pathologies, postural and gait impairments.
Mes dernières références
My latest references
Publications récentes
Shoe wear test machine: What exists versus innovations and promising concepts. A scoping review
Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 9p, doi: 10.1177/17543371221133903
http://dx.doi.org/10.1177/17543371221133903
Importance of 3D handheld dynamometer's kinematics in estimation of passive joint moments
Gait and Posture, 97, pp S28-S29, doi: 10.1016/j.gaitpost.2022.07.027
http://dx.doi.org/10.1016/j.gaitpost.2022.07.027
Could a kinematic method not based on EMG be used to determine stretch-reflex thresholds?
Gait and Posture, 97, pp S36-S37, doi: 10.1016/j.gaitpost.2022.07.031
http://dx.doi.org/10.1016/j.gaitpost.2022.07.031
Decreased Mechanical Work Demand in the Chopart Joint After Total Ankle Replacement
Foot & Ankle International, 43, 10, pp 1354-1363, doi: 10.1177/10711007221112094
http://dx.doi.org/10.1177/10711007221112094
Accuracy and precision of the measurement of liner orientation of dual mobility cup total hip arthroplasty using ultrasound imaging
Medical Engineering & Physics, 108, 16p, doi: 10.1016/j.medengphy.2022.103877
http://dx.doi.org/10.1016/j.medengphy.2022.103877
The Conventional Gait Model's sensitivity to lower-limb marker placement
Scientific Reports, 12, 1, 8p, doi: 10.1038/s41598-022-18546-5
http://dx.doi.org/10.1038/s41598-022-18546-5
Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing
Frontiers in Sports and Active Living, 4, 11p, doi: 10.3389/fspor.2022.939980
http://dx.doi.org/10.3389/fspor.2022.939980
Femorotibial alignment measured during robotic assisted knee surgery is reliable: radiologic and gait analysis
Archives of Orthopaedic and Trauma Surgery, 142, 7, pp 1645-1651, doi: 10.1007/s00402-021-04033-5
http://dx.doi.org/10.1007/s00402-021-04033-5
Uncertainty analysis and sensitivity of scapulothoracic joint angles to kinematic model parameters
Medical & biological engineering & computing, 60, pp2065-2075, doi: 10.1007/s11517-022-02593-1
http://dx.doi.org/10.1007/s11517-022-02593-1
Changes in ankle and foot kinematic after fixed-bearing total ankle replacement
Journal of Biomechanics, 136, 32p, doi: 10.1016/j.jbiomech.2022.111060
http://dx.doi.org/10.1016/j.jbiomech.2022.111060
Subject-specific model-derived kinematics of the shoulder based on skin markers during arm abduction up to 180° - assessment of 4 gleno-humeral joint models
Journal of Biomechanics, 136, 18p, doi: 10.1016/j.jbiomech.2022.111061
http://dx.doi.org/10.1016/j.jbiomech.2022.111061
Dynamic estimation of soft tissue stiffness for use in modeling socket, orthosis or exoskeleton interfaces with lower limb segments
Journal of Biomechanics, 134, 30p, doi: 10.1016/j.jbiomech.2022.110987
http://dx.doi.org/10.1016/j.jbiomech.2022.110987
Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment
IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, 29, pp 1300-1311, doi: 10.1109/TNSRE.2021.3089873
http://dx.doi.org/10.1109/TNSRE.2021.3089873
Contribution of passive moments to inter-segmental moments during gait: A systematic review
Journal of Biomechanics, 122, 38p, doi: 10.1016/j.jbiomech.2021.110450
http://dx.doi.org/10.1016/j.jbiomech.2021.110450
Knee loading in OA subjects is correlated to flexion and adduction moments and to contact point locations
Nature Scientific Reports, 11, 1, 9p, doi: 10.1038/s41598-021-87978-2
http://dx.doi.org/10.1038/s41598-021-87978-2
Post-sprain versus post-fracture post-traumatic ankle osteoarthritis: Impact on foot and ankle kinematics and kinetics
Gait and Posture, 86, p 278-286, doi: 10.1016/j.gaitpost.2021.03.029
http://dx.doi.org/10.1016/j.gaitpost.2021.03.029
The effect of ankle and hindfoot malalignment on foot mechanics in patients suffering from post-traumatic ankle osteoarthritis
Clinical Biomechanics, 81, 31p, doi: 10.1016/j.clinbiomech.2020.105239
http://dx.doi.org/10.1016/j.clinbiomech.2020.105239
Impact of foot modeling on the quantification of the effect of total ankle replacement: A pilot study
Gait and Posture, 84, pp 308-314, doi: 10.1016/j.gaitpost.2020.12.027
https://www.sciencedirect.com/journal/gait-and-posture
http://dx.doi.org/10.1016/j.gaitpost.2020.12.027
Accuracy of the tibiofemoral contact forces estimated by a subject-specific musculoskeletal model with fluoroscopy-based contact point trajectories
Journal of Biomechanics, 113, pp 110-117, doi: 10.1016/j.jbiomech.2020.110117
http://dx.doi.org/10.1016/j.jbiomech.2020.110117
https://www.sciencedirect.com/journal/journal-of-biomechanics
The effect of anterolateral ligament reconstruction on knee constraint: A computer model-based simulation study
The Knee, 27, 4, pp 1228-1237, doi: 10.1016/j.knee.2020.05.006
http://dx.doi.org/10.1016/j.knee.2020.05.006
https://www.sciencedirect.com/journal/the-knee
Physically Consistent Whole-Body Kinematics Assessment Based on an RGB-D Sensor. Application to Simple Rehabilitation Exercises
Sensors, 20, 10, 18p, doi: 10.3390/s20102848
http://dx.doi.org/10.3390/s20102848
https://www.mdpi.com/journal/sensors
Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model - A sensitivity study
PLOS ONE, 15, 4, 15p, doi: 10.1371/journal.pone.0232064
http://dx.doi.org/10.1371/journal.pone.0232064
https://journals.plos.org/plosone/
Intrinsic foot joints adapt a stabilized-resistive configuration during the stance phase
Journal of Foot and Ankle Research, 13, 1, 12p, doi: 10.1186/s13047-020-0381-7
https://doi.org/10.1186/s13047-020-0381-7
ISB recommendations on the reporting of intersegmental forces and moments during human motion analysis
Journal of Biomechanics, 99, 35 p, doi: 10.1016/j.jbiomech.2019.109533
https://doi.org/10.1016/j.jbiomech.2019.109533
https://www.sciencedirect.com/journal/journal-of-biomechanics
Comportement de la reconstruction latérale du genou lors d'une flexion de genou en charge et d'un pivot-shift : une étude de simulation
Revue de Chirurgie Orthopédique et Traumatologique, 105, 4, pp 446-451, doi: 10.1016/j.rcot.2019.04.005
http://dx.doi.org/10.1016/j.rcot.2019.04.005
https://hal.archives-ouvertes.fr/hal-03486533
Comments on the "Influence of the load modelling during gait on the stress distribution in a femoral implant" by Gervais et al.
Multibody System Dynamics, 47, 4, pp. 435-437, doi: 10.1007/s11044-019-09709-w
https://doi.org/10.1007/s11044-019-09709-w
https://link.springer.com/journal/11044
IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement? a proof of concept
Medical & Biological Engineering & Computing, 57, 11, pp. 2449-2460, doi: 10.1007/s11517-019-02033-7
https://doi.org/10.1007/s11517-019-02033-7
https://link.springer.com/journal/11517
Can a reduction approach predict reliable joint contact and musculo-tendon forces?
Journal of Biomechanics, 95, 109329, doi: 10.1016/j.jbiomech.2019.109329
https://doi.org/10.1016/j.jbiomech.2019.109329
https://www.sciencedirect.com/journal/journal-of-biomechanics
A screening method to analyse the sensitivity of a lower limb multibody kinematic model
Computer Methods in Biomechanics and Biomedical Engineering, 22, 10, pp. 925-935, doi: 10.1080/10255842.2019.1604950
https://doi.org/10.1080/10255842.2019.1604950
https://www.tandfonline.com/toc/gcmb20/current
Correcting lower limb segment axis misalignment in gait analysis: A simple geometrical method
Gait & Posture, 72, pp. 34-39, doi: 10.1016/j.gaitpost.2019.05.013
https://doi.org/10.1016/j.gaitpost.2019.05.013
https://www.sciencedirect.com/journal/gait-and-posture
Lateral extra-articular reconstruction length changes during weightbearing knee flexion and pivot shift: A simulation study
Orthopaedics & Traumatology: Surgery & Research, 105, 4, pp. 661-667, doi: 10.1016/j.otsr.2019.02.020
https://doi.org/10.1016/j.otsr.2019.02.020
https://www.sciencedirect.com/journal/orthopaedics-and-traumatology-surgery-and-research
Technical considerations in lateral extra-articular reconstruction coupled with anterior cruciate ligament reconstruction: A simulation study evaluating the influence of surgical parameters on control of knee stability
Clinical Biomechanics, 61, pp. 136-143, doi: 10.1016/j.clinbiomech.2018.12.011
https://doi.org/10.1016/j.clinbiomech.2018.12.011
https://www.sciencedirect.com/journal/clinical-biomechanics
Incidence and patterns of meniscal tears accompanying the anterior cruciate ligament injury: possible local and generalized risk factors
International Orthopaedics, 42, 9, pp. 2113-2121, doi: 10.1007/s00264-018-3992-x
https://doi.org/10.1007/s00264-018-3992-x
https://link.springer.com/journal/264
Contribution of passive actions to the lower limb joint moments and powers during gait: A comparison of models
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232, 8, pp. 768-778, doi: 10.1177/0954411918785661
https://doi.org/10.1177/0954411918785661
Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait
Gait and Posture, 63, pp. 33-38, doi: 10.1016/j.gaitpost.2018.04.019
https://doi.org/10.1016/j.gaitpost.2018.04.019
https://www.sciencedirect.com/journal/gait-and-posture
Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories
Journal of Biomechanics, 69, pp. 138-145, doi: 10.1016/j.jbiomech.2018.01.021
http://dx.doi.org/10.1016/j.jbiomech.2018.01.021
https://www.sciencedirect.com/journal/journal-of-biomechanics
Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review
Journal of Biomechanical Engineering, 140, 3, 11 p, doi: 10.1115/1.4038741
http://dx.doi.org/10.1115/1.4038741
http://biomechanical.asmedigitalcollection.asme.org/journal.aspx
Rotation sequence to report humerothoracic kinematics during 3D motion involving large horizontal component: application to the tennis forehand drive
Sports Biomechanics, 17, 1, pp. 131-141, doi: 10.1080/14763141.2016.1260765
https://doi.org/10.1080/14763141.2016.1260765
http://www.tandfonline.com/toc/gcpi20/current
Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: A systematic review
Journal of Biomechanics, 63, pp. 8-20, doi: 10.1016/j.jbiomech.2017.08.025
https://doi.org/10.1016/j.jbiomech.2017.08.025
http://www.sciencedirect.com/science/journal/00219290?sdc=2
A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices
Journal of Biomechanics, 64, pp. 85-92, doi: 10.1016/j.jbiomech.2017.09.005
http://www.sciencedirect.com/science/journal/00219290
https://doi.org/10.1016/j.jbiomech.2017.09.005
https://hal.archives-ouvertes.fr/hal-01616928
Human movement analysis: The soft tissue artefact issue
Journal of Biomechanics, 62, pp. 1-4, doi: 10.1016/j.jbiomech.2017.09.001
https://doi.org/10.1016/j.jbiomech.2017.09.001
http://www.sciencedirect.com/science/journal/00219290?sdc=2
Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone
Journal of Biomechanics, 62, pp. 47-52, doi: 10.1016/j.jbiomech.2017.06.002
https://doi.org/10.1016/j.jbiomech.2017.06.002
http://www.sciencedirect.com/science/journal/00219290?sdc=2
Assessment of the lower limb soft tissue artefact at marker-cluster level with a high-density marker set during walking
Journal of Biomechanics, 62, pp. 21-26, doi: 10.1016/j.jbiomech.2017.04.036
https://doi.org/10.1016/j.jbiomech.2017.04.036
http://www.sciencedirect.com/science/journal/00219290?sdc=2
A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise
Journal of Biomechanics, 62, pp. 140-147, doi: 10.1016/j.jbiomech.2016.12.027
https://doi.org/10.1016/j.jbiomech.2016.12.027
http://www.sciencedirect.com/science/journal/00219290?sdc=2
Main component of soft tissue artifact of the upper-limbs with respect to different functional, daily life and sports movements. In special issue: Human Movement Analysis: The Soft Tissue Artefact Issue
Journal of Biomechanics, 62, pp. 39-46, doi: 10.1016/j.jbiomech.2016.10.019
https://doi.org/10.1016/j.jbiomech.2016.10.019
http://www.sciencedirect.com/science/journal/00219290?sdc=2
Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. Part of special issue: Human Movement Analysis: The Soft Tissue Artefact Issue
Journal of Biomechanics, 62, pp. 148-155, doi: 10.1016/j.jbiomech.2017.04.033
http://www.sciencedirect.com/science/journal/00219290?sdc=2
https://doi.org/10.1016/j.jbiomech.2017.04.033
https://hal.archives-ouvertes.fr/hal-01616915
Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. Part of special issue: Human Movement Analysis: The Soft Tissue Artefact Issue
Journal of Biomechanics, 62, pp. 95-101, doi: 10.1016/j.jbiomech.2017.01.030
https://doi.org/10.1016/j.jbiomech.2017.01.030
www.sciencedirect.com/science/journal/00219290
Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study
Knee Surgery, Sports Traumatology, Arthroscopy, 25, 5, pp. 1598-1605, doi: 10.1007/s00167-017-4447-4
https://dx.doi.org/10.1007/s00167-017-4447-4
https://link.springer.com/journal/167
Kinematics of the normal knee during dynamic activities: a synthesis of data from intracortical pins and biplane imaging
Applied Bionics and Biomechanics, 2017, 9 p, doi: 10.1155/2017/1908618
https://www.hindawi.com/journals/abb/2017/1908618/
https://doi.org/10.1155/2017/1908618
Gait analysis of transfemoral amputees: errors in inverse dynamics are substantial and depend on prosthetic Design
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 6, pp. 679-685, doi: 10.1109/TNSRE.2016.2601378
https://dx.doi.org/10.1109/TNSRE.2016.2601378
Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait
Multibody System Dynamics, 40, 2, pp. 193-211, doi: 10.1007/s11044-017-9564-9
https://dx.doi.org/10.1007/s11044-017-9564-9
Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: A bi-planar X-ray analysis
Journal of Biomechanics, 53, pp. 178-184, doi: 10.1016/j.jbiomech.2017.01.015
http://dx.doi.org/10.1016/j.jbiomech.2017.01.015
https://hal.archives-ouvertes.fr/hal-01451796
http://www.sciencedirect.com/science/article/pii/S0021929017300167
Glenohumeral contact force during flat and topspin tennis forehand drives
Sports Biomechanics, 16, 1, pp. 127-142, doi: 10.1080/14763141.2016.1216585
https://dx.doi.org/10.1080/14763141.2016.1216585
https://www.tandfonline.com/toc/rspb20/current
A multi-body optimization framework with a knee kinematic model including articular contacts and ligaments
Meccanica, 52, 3, pp. 695-711, doi: 10.1007/s11012-016-0532-x
http://dx.doi.org/10.1007/s11012-016-0532-x
http://link.springer.com/journal/11012
Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity?
Computer Methods in Biomechanics and Biomedical Engineering, 20, 1, pp. 94-103, doi: 10.1080/10255842.2016.1202935
http://dx.doi.org/10.1080/10255842.2016.1202935
http://www.tandfonline.com/toc/gcmb20/current