David MITTON
Directeur du Laboratoire de Biomécanique et Mécanique des Chocs (LBMC, Lyon, France)
CFR / LBMC - Laboratoire de Biomécanique et Mécanique des Chocs
Bron
Bâtiment: Building: L3
25 avenue François Mitterrand$Case24$F-69675 Bron Cedex
Bureau: Office: 277
David MITTON
Directeur du Laboratoire de Biomécanique et Mécanique des Chocs (LBMC, Lyon, France)
CFR / LBMC - Laboratoire de Biomécanique et Mécanique des Chocs
Position actuelle
Depuis 2022, Directeur du Laboratoire International Associé, EValuation Anatomo-fonctionnelle du SYstème Musculosquelettique (LIA EVASYM) entre Lyon et Montréal.
Depuis 2016, Directeur du Laboratoire de Biomécanique et Mécanique des Chocs (UMR_T 9406, Univ Lyon - Univ Gustave Eiffel)
(lbmc.ifsttar.fr)
Depuis 2008, Directeur de Recherche
Positions antérieures
2019-2022, Directeur adjoint du Laboratoire International Associé, EValuation Anatomo-fonctionnelle du SYstème Musculosquelettique (LIA EVASYM) entre Lyon et Montréal.
2006-2008 Professeur des Universités, Arts et Métiers ParisTech, (Laboratoire de Biomécanique UMR CNRS 8005).
1998-2006 Maître de conférences, Arts et Métiers ParisTech (ENSAM Paris), (Laboratoire de Biomécanique UMR CNRS 8005).
Formation
2003 Habilitation à Diriger des Recherches, Université Paris XII Val de Marne
1997 Doctorat de Génie Biomédical, INSA de Lyon
Thématiques de recherche
Actuellement, mes recherches concernent la prédiction de fracture, en cas de chute ou lors de chargements physiologiques. Afin d’améliorer la prédiction de fracture, nous développons des modèles biomécaniques personnalisés à partir de l'imagerie médicale. Nous avons étudié l‘impact de la vitesse du chargement sur le comportement à la fracture de l’os cortical par rapport à un chargement lent (Gauthier et al. JMBBM 2017, Gauthier et al. Bone 2018, Gauthier et al. 2019 J Biomechanics). Nous étudions également l’effet des conditions de chargement sur la résistance des structures osseuses (par ex. radius, os de l’avant-bras sujet à des fractures lors d’une chute vers l’avant) (Zapata et al. J Biomechanics 2017, Revel et al. Bone 2022, Revel et al. JMBBM 2022).
Sociétés savantes
2022-2024 : Président de l'European Society of Biomechanics
2020-2022 : Secrétaire Général de l'European Society of Biomechanics
2016-2024 : Membre du Conseil d'Administration de l'European Society of Biomechanics
2014-2017 : Président de la Société de Biomécanique (communauté francophone)
2012-2018 et 2002-2008 : Membre du Conseil d'Administration de la Société de Biomécanique (communauté francophone)
Organisation de conférences
Président du comité d’organisation de l’ESB 2016 (organisé conjointement par l’European Society of Biomechanics et la Société de Biomécanique), 10-13 juillet 2016, Lyon (780 participants)
Site du congrès
Current positions
Since 2019, Deputy director of the associated international laboratory EVASYM (anatomo-functional evaluation of the musculoskeletal system) between Lyon and Montréal
Since 2016, Director the Laboratory of biomechanics and impact mechanics (UMR_T 9406, Univ Lyon - Univ Gustave Eiffel)
Since 2008, Research Director
Previous positions
2006-2008 Full professor, Arts et Métiers ParisTech, (Biomechanics laboratory UMR CNRS 8005)
2003 - 2006 Associate Professor, Arts et Métiers ParisTech, (Biomechanics laboratory UMR CNRS 8005)
1998-2003 Assitant Professor, Arts et Métiers ParisTech, (Biomechanics laboratory UMR CNRS 8005)
Education and training
2003 Research supervision enablement, Université Paris 12, France
1997 PhD in Biomedical engineering, major biomechanics, INSA engineering school, Lyon, France
Research activities
Currently my research activities are related to bone fracture prediction, espcially in case of fall. We have studied the influence of the loading speed on the cortical bone thoughness (Gauthier et al. JMBBM 2017) and the role of the microstructure (e.g. Gauthier et al. Bone 2018, Gauthier et al. 2019 J Biomechanics). We are also interested in the loading conditions on the bone strength (e.g. the radius during a fall, Zapata et al. J Biomechanics 2017).
Scientific societies
Since 2020 , Secretary General of the European Society of Biomechanics
Since 2016, Council member of the European Society of Biomechanics
2014-2017 President of the Société de Biomécanique (french speaking community)
Conferences organization
Chair of the organizing committee of ESB 2016 (jointly organized by the European Society of Biomechanics and the Société de Biomécanique), 10-13 July 2016, Lyon (780 attendees)
Mes dernières références
My latest references
Publications dans des revues internationales
Osteocyte pericellular and perilacunar matrices as markers of bone-implant mechanical integrity
BIOCELL, 46, 10, pp 2209-2216, doi: 10.32604/biocell.2022.022290
http://dx.doi.org/10.32604/biocell.2022.022290
https://hal.archives-ouvertes.fr/hal-03763037
Mechanical properties of breast, kidney, and thyroid tumours measured by AFM: relationship with tissue structure
Materialia, 25, 29p, doi: 10.1016/j.mtla.2022.101555
http://dx.doi.org/10.1016/j.mtla.2022.101555
A credible homogenized finite element model to predict radius fracture in the case of a forward fall
Journal of the Mechanical Behavior of Biomedical Materials, 131, 43p, doi: 10.1016/j.jmbbm.2022.105206
http://dx.doi.org/10.1016/j.jmbbm.2022.105206
Influence of Loading Conditions in Finite Element Analysis Assessed by HR-pQCT on Ex Vivo Fracture Prediction
Bone, 154, 29p, doi: 10.1016/j.bone.2021.116206
http://dx.doi.org/10.1016/j.bone.2021.116206
Fracture Risk Evaluation of Bone Metastases: A Burning Issue
Cancers, 13, 22, 18p, doi: 10.3390/cancers13225711
http://dx.doi.org/10.3390/cancers13225711
Variabilities in µQCT-based FEA of a tumoral bone mice model
Journal of Biomechanics, 118, 13P, doi: 10.1016/j.jbiomech.2021.110265
https://doi.org/10.1016/j.jbiomech.2021.110265
What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure?
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 16 p, doi: 10.1177/0954411919884776
https://doi.org/10.1177/0954411919884776
https://journals.sagepub.com/doi/pdf/10.1177/0954411919884776
3D analysis of the osteonal and interstitial tissue in human radii cortical bone
BONE, 127, pp. 526-536, doi: 10.1016/j.bone.2019.07.028
http://dx.doi.org/10.1016/j.bone.2019.07.028
https://hal.archives-ouvertes.fr/hal-02304636
Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly
Acta Biomaterialia,
https://doi.org/10.1016/j.actbio.2019.03.043
https://www.sciencedirect.com/journal/acta-biomaterialia
Influence of loading condition and anatomical location on human cortical bone linear micro-cracks
Journal of Biomechanics, 85, pp. 59-66, doi: 10.1016/j.jbiomech.2019.01.008
https://doi.org/10.1016/j.jbiomech.2019.01.008
https://www.sciencedirect.com/journal/journal-of-biomechanics
https://hal.archives-ouvertes.fr/hal-02058768
Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study
Bone, 116, pp. 111-119, doi: 10.1016/j.bone.2018.07.018
https://dx.doi.org/10.1016/j.bone.2018.07.018
https://www.sciencedirect.com/journal/bone
3D micro structural analysis of human cortical bone in paired femoral diaphysis, femoral neck and radial diaphysis
Journal of Structural Biology,
https://dx.doi.org/10.1016/j.jsb.2018.08.006
https://www.sciencedirect.com/journal/journal-of-structural-biology
Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations
Bone, 112, pp. 202-211, doi: 10.1016/j.bone.2018.04.024
https://www.sciencedirect.com/journal/bone
https://doi.org/10.1016/j.bone.2018.04.024
Biomechanical characterization of ex vivo human brain using ultrasound shear wave spectroscopy
Ultrasonics, 84, pp. 119-125, doi: 10.1016/j.ultras.2017.10.009
https://doi.org/10.1016/j.ultras.2017.10.009
http://www.sciencedirect.com/science/journal/0041624X
An ex vivo experiment to reproduce a forward fall leading to fractured and non-fractured radii
Journal of Biomechanics, pp. 174-178, doi: 10.1016/j.jbiomech.2017.08.013
https://dx.doi.org/10.1016/j.jbiomech.2017.08.013
www.sciencedirect.com/science/journal/00219290
In vivo assessment of elasticity of child rib cortical bone using quantitative computed tomography
Applied Bionics and Biomechanics, 2017, 2471368, 9 p, doi: 10.1155/2017/2471368
https://doi.org/10.1155/2017/2471368
https://www.hindawi.com/journals/abb/
Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites
Journal of the Mechanical Behavior of Biomedical Materials, 71, pp. 223-230, doi: 10.1016/j.jmbbm.2017.03.015
http://www.sciencedirect.com/science/article/pii/S175161611730125X
https://dx.doi.org/10.1016/j.jmbbm.2017.03.015
In vitro implant-bone interface pressure measurements for a cementless femoral implant. A preliminary study
Journal of Orthopaedic Science, 21, 4, pp. 487-492, doi: 10.1016/j.jos.2016.04.004
http://dx.doi.org/10.1016/j.jos.2016.04.004
http://www.sciencedirect.com/science/journal/09492658
Short isthmic versus long trans-isthmic C2 screw: anatomical and biomechanical evaluation
European Journal of Orthopaedic Surgery & Traumatology, 26, 7, pp. 785-791, doi: 10.1007/s00590-016-1770-2
http://link.springer.com/journal/590
https://dx.doi.org/10.1007/s00590-016-1770-2
Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT)
Radiology, 280, 3, 11 p, doi: 10.1148/radiol.2016142796
http://dx.doi.org/10.1148/radiol.2016142796
Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities
Journal of the Mechanical Behavior of Biomedical Materials, 60, pp. 451-459, doi: 10.1016/j.jmbbm.2016.03.001
http://dx.doi.org/10.1016/j.jmbbm.2016.03.001
http://www.journals.elsevier.com/journal-of-the-mechanical-behavior-of-biomedical-materials/
Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone
Journal of the Mechanical Behavior of Biomedical Materials, 48, pp. 210-219, doi: 10.1016/j.jmbbm.2015.04.013
http://dx.doi.org/10.1016/j.jmbbm.2015.04.013
https://hal.archives-ouvertes.fr/hal-01213909
Mechanical loading at the organ level: which consequences for bones?
Osteoporosis International, 25, Suppl?ment 3, pp S468-S470, doi: 10.1007/s00198-014-2681-x
http://dx.doi.org/10.1007/s00198-014-2681-x
https://hal.archives-ouvertes.fr/hal-02353938
https://hal.archives-ouvertes.fr/hal-02353938/file/Mitton_14_OI_Mechanical loading at the organ level (1).pdf
Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo
Journal of Biomechanics, 12, 47, pp. 3056-3063, doi: 10.1016/j.jbiomech.2014.06.031
http://dx.doi.org/10.1016/j.jbiomech.2014.06.031
http://www.sciencedirect.com/science/article/pii/S0021929014003704
Experimental characterization of post rigor mortis human muscle subjected to small tensile strains and application of a simple hyper-viscoelastic model
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228, 10, pp. 1059-1068, doi: 10.1177/0954411914555422
http://dx.doi.org/10.1177/0954411914555422
Mechanical response of human abdominal walls ex vivo: Effect of an incisional hernia and a mesh repair
Journal of the Mechanical Behavior of Biomedical Materials, 38, pp. 126-133, doi: 10.1016/j.jmbbm.2014.07.002
http://dx.doi.org/10.1016/j.jmbbm.2014.07.002
Non Destructive Characterization of Cortical Bone Micro-Damage by Nonlinear Resonant Ultrasound Spectroscopy
Plos One, 9, 1, pp. 1-11, doi: 10.1371/journal.pone.0083599
http://dx.doi.org/10.1371/journal.pone.0083599
https://hal.archives-ouvertes.fr/hal-00925167
Mechanical behaviour of the in vivo paediatric and adult trunk during respiratory physiotherapy
Proceedings of the Institution of Mechanical Engineers, Part H : Journal of engineering in medicine, 228, 1, pp. 27-36, doi: 10.1177/0954411913512282
http://dx.doi.org/10.1177/0954411913512282
https://hal.archives-ouvertes.fr/hal-01431751
Non-destructive assessment of human ribs mechanical properties using quantitative ultrasound
Journal of Biomechanics, 47, 6, pp. 1548-1553, doi: 10.1016/j.jbiomech.2014.01.052
http://dx.doi.org/10.1016/j.jbiomech.2014.01.052
Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement: a 3-month and 12-month study
Arthroscopy: The Journal of Arthroscopy and Related Surgery, 29, (6), pp. 1079-1088, doi: 10.1016/j.arthro.2013.02.025
https://doi.org/10.1016/j.arthro.2013.02.025
https://www.sciencedirect.com/journal/arthroscopy-the-journal-of-arthroscopic-and-related-surgery
Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood
Medical & Biological Engineering & Computing, 51, 9, pp. 971-979, doi: 10.1007/s11517-013-1070-5
https://dx.doi.org/10.1007/s11517-013-1070-5
https://link.springer.com/journal/11517
https://hal.archives-ouvertes.fr/hal-01020521
Viscoelastic properties of the human sternocleidomastoideus muscle of aged women in relaxation
Journal of the Mechanical Behavior of Biomedical Materials, 27, pp. 77-83, doi: 10.1016/j.jmbbm.2013.06.010
http://dx.doi.org/10.1016/j.jmbbm.2013.06.010
http://www.journals.elsevier.com/journal-of-the-mechanical-behavior-of-biomedical-materials/
Effect of two loading rates on the elasticity of the human anterior rectus sheath
Journal of the mechanical behavior of biomedical materials, 20, pp 1-5, doi: 10.1016/j.jmbbm.2012.12.002
http://www.sciencedirect.com/science/journal/17516161
http://dx.doi.org/10.1016/j.jmbbm.2012.12.002
Hyper-elastic properties of the human sternocleidomastoideus muscle in tension
Journal of the mechanical behavior of biomedical material, 15, pp. 131-140, doi: 10.1016/j.jmbbm.2012.06.013
http://www.sciencedirect.com/science/journal/17516161
http://dx.doi.org/10.1016/j.jmbbm.2012.06.013
Axial speed of sound is related to tendon's nonlinear elasticity
Journal of Biomechanics, 45, 22, p263-268, doi: 10.1016/j.jbiomech.2011.10.032
http://www.sciencedirect.com/science/journal/00219290
http://dx.doi.org/10.1016/j.jbiomech.2011.10.032
Axial Speed of Sound for the Monitoring of Injured Equine Tendons: a Preliminary Study
Journal of Biomechanics, 45, 1, pp. 53-58, doi: 10.1016/j.jbiomech.2011.10.016
http://www.sciencedirect.com/science/journal/00219290
http://dx.doi.org/10.1016/j.jbiomech.2011.10.016
First application of axial speed of sound to follow up injured equine tendons
Ultrasound in Medicine and Biology, 38, 1, pp. 162-167, doi: 10.1016/j.ultrasmedbio.2011.10.008
http://www.sciencedirect.com/science/journal/03015629
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.10.008
Détection du micro-endommagement dans le tissu osseux trabéculaire par une méthode d'acousto-élasticité dynamique
IRBM, 32, 5, pp. 269-273, doi: 10.1016/j.irbm.2011.09.009
http://dx.doi.org/10.1016/j.irbm.2011.09.009
http://www.sciencedirect.com/science/journal/19590318
True stress and Poisson's ratio of tendons during loading
Journal of Biomechanics, 44, 4, pp. 719-724, doi: 10.1016/j.jbiomech.2010.10.038
http://www.sciencedirect.com/science/journal/00219290
http://dx.doi.org/10.1016/j.jbiomech.2010.10.038
Young's modulus repeatability assessment using cycling compression loading on cancellous bone
Proceedings of the Institution of mechanical engineers - part H - Journal of engineering in medicine, 225, 11, pp 1113-1117, doi: 10.1177/0954411911416858
http://www.sagepub.com/journalsProdDesc.nav?prodId=Journal202022
http://dx.doi.org/10.1177/0954411911416858
http://hal.archives-ouvertes.fr/hal-00824222
Monitoring trabecular bone microdamage using a dynamic acousto elastic testing method
Journal of Engineering in Medicine Proceedings of the Institution of Mechanical Engineers Part H, 225, 3, pp. 282-295, doi: 10.1243/09544119JEIM846
http://dx.doi.org/10.1243/09544119JEIM846
http://www.sagepub.com/journalsProdDesc.nav?prodId=Journal202022
A linear laser scanner to measure cross-sectional shape and area of biological specimens during mechanical testing
Journal of Biomechanical Engineering, 132, 10, 7 p, doi: 10.1115/1.4002374
http://www.asmedl.org/Biomechanical/
http://dx.doi.org/10.1115/1.4002374