Christelle ABADIE
Chargée de Recherche de Classe Normale
CFR / GERS - Département Géotechnique, environnement, risques naturels et sciences de la Terre
CG - Centrifugeuses Géotechniques
Bouguenais
Bâtiment: Building: Bouguer
Allée des Ponts et Chaussées
Route de Bouaye
CS 5004
44344 Bouguenais Cedex
Bureau: Office: B025b
Christelle ABADIE
Chargée de Recherche de Classe Normale
CFR / GERS - Département Géotechnique, environnement, risques naturels et sciences de la Terre
CG - Centrifugeuses Géotechniques
Géotechnique pour le Développement Durable dans le Contexte du Changement Climatique
Les nations du monde entier sont confrontées à un défi sans précédent : garantir une énergie sécurisée tout en limitant le réchauffement climatique. Parallèlement, le réchauffement climatique aggrave les conditions météorologiques extrêmes, augmentant ainsi la fréquence des géorisques tels que les effondrements, les glissements de terrain et les tremblements de terre. Il est ainsi essentiel de contribuer au développement des énergies vertes tout en protégeant les infrastructures contre ces événements potentiellement catastrophiques.
Les ingénieurs géotechniciens jouent un rôle central dans la résolution de ces problèmes en fournissant des solutions novatrices pour faire face au changement climatique et en proposant de construire des infrastructures durables. Mes travaux de recherche en géomécanique et en intéraction sol-structure sont à l'interface entre le domaine de l'énergie et celui de la conception d'infrastructures durables. Mes travaux ont pour but de développer des solutions géotechniques dans le contexte du changement climatique et se divisent en deux axes de recherche principaux:
1 | La conception et l'optimisation des fondations et structures de support des éoliennes offshore
J'ai plus de 10 ans d'expérience de recherche sur l'amélioration des méthodes de calculs et la compréhension du comportement des fondations des éoliennes offshore de type monopieux soumises à diverses conditions de charge :
- Charge ultime et chargement monotonique (modèle PISA)
- Chargement cyclique à grand nombre de cycles (modèle HARM, projet SLOOP)
- Chargement multi-directionnel cyclique (modèle CLAP)
- Chargement sismiques (en particulier, le comportement de la pièce de transition)
Je travaille également sur des problématiques importantes pour l'essor et le déploiement des éoliennes offshores:
- L'installation dans des sols complexe (projets PAREF, PRISSMA et C-PIGS)
- Les Systèmes d'ancrage innovants pour les éoliennes flottantes (projets MUTANC/MUTANC2, SAM-WT, CLAP, PAREF, PINTO)
- Transfert de connaissances pour l'optimisation des fondations éoliennes terrestres afin de réduire les émissions de carbone et les coûts
Resources vidéos:
- Vulgarisation scientifique - L'éolien marin, comment ça tient? (en français)
- Recherche et développement en fondations pour éolienne offshore - ISSMGE TC 209 Interactive Talk (in english)
- Ancres partagées pour éolienne offshore - ISSMGE Bright Spark Award 2025 (in english)
2 | Système d'alerte précoce pour les effondrements de sol de type doline ou fontis
Je suis la responsable académique du projet SINEW, un projet de recherche en cours visant à développer un système d'alerte précoce pour les mouvements du sol, et basé sur une combinaison de détection par fibre optique et de surveillance par satellite. Ce projet s'effectue en collaboration avec l'Université de Pretoria (Afrique du Sud), l'Université Federico II (Naples, Italie), l'Université de Cambridge (Royaume-Uni) et l'Université de Manchester (Royaume-Uni).
Biographie
Dr Christelle Abadie est l'une des chargées de recherche au sein du groupe Centrifugeuses Géotechniques de l'Université Gustave Eiffel, sur le Campus de Nantes (Bouguenais). Elle est titulaire d'un diplôme d'ingénieur des Grandes Ecoles de l'ENSTA ParisTech et d'un doctorat en génie civil de l'Université d'Oxford. Au cours de son doctorat, elle a étudié la réponse des fondations monopieux à des chargements latéraux cycliques à long terme (modèle HARM), suivi d'un post-doctorat à l'Université d'Oxford, sur le projet PISA2 (Pile Soil Analysis). Elle a ensuite poursuivi ses recherches en tant que professeure adjointe en génie civil à l'Université de Cambridge, où elle était membre de Fitzwilliam College. Elle est actuellement co-secrétaire générale de la conférence ISFOG 2025 (International Symposium for Frontiers in Geotechnics) qui se tiendra à Nantes en juin 2025.
Geotechnics for Sustainable Development in the Context of Climate Change
Nations around the world face an unprecedented challenge: ensuring secure energy supply while limiting global warming. At the same time, climate change is intensifying extreme weather events, increasing the frequency of geohazards such as sinkholes, landslides, and earthquakes. It is therefore essential to both advance the development of green energy and protect infrastructure from these potentially catastrophic events.
Geotechnical engineers play a central role in addressing these challenges by developing innovative solutions to mitigate the effects of climate change and by designing resilient, sustainable infrastructure.
Christelle's research in geomechanics and soil–structure interaction lies at the interface between the energy sector and sustainable infrastructure design. It aims to develop geotechnical solutions tailored to the challenges of climate change and is structured around two main research themes:
1 | Design and Optimization of Offshore Wind Turbine Foundations and Support Structures
Christelle has over ten years of research experience focused on improving design methods and understanding the behaviour of monopile foundations for offshore wind turbines under various loading conditions:
- Ultimate and monotonic loading (PISA model)
- High-cycle cyclic loading (HARM model, SLOOP project)
- Multidirectional cyclic loading (CLAP model)
- Seismic loading (particularly the response of the transition piece)
Christelle is also involved in several projects addressing key challenges for the deployment and long-term performance of offshore wind energy:
- Installation in complex soils (PAREF, PRISSMA, and C-PIGS projects)
- Innovative anchoring systems for floating wind turbines (MUTANC/MUTANC2, SAM-WT, CLAP, PAREF, and PINTO projects)
- Knowledge transfer for optimizing onshore wind turbine foundations to reduce both carbon footprint and costs
Video resources:
- Public outreach (in French): L’éolien marin – comment ça tient ?
- Research presentation: Offshore Wind Turbine Foundations : Challenges and Opportunities – ISSMGE TC 209 Interactive Talk (in English)
- Award talk: Shared Anchors for Offshore Wind Turbines – ISSMGE Bright Spark Award 2025 (in English)
2 | Early-Warning Systems for Ground Collapse (Sinkholes and Subsidence)
Christelle serve as the academic lead of the ongoing SINEW project, which aims to develop an early-warning system for ground movement based on fiber-optic sensing combined with satellite monitoring.
This project is conducted in collaboration with: Stellenbosch University (South Africa), University of Naples Federico II (Italy), University of Cambridge (UK), University of Manchester (UK)
Biography
Dr. Christelle Abadie is a Research Scientist within the Geotechnical Centrifuge Group at Université Gustave Eiffel, located on the Nantes (Bouguenais) campus. She holds an engineering degree from ENSTA ParisTech and a PhD in Civil Engineering from the University of Oxford. Her doctoral research focused on the long-term cyclic lateral loading response of monopile foundations (HARM model), followed by a postdoctoral position at Oxford on the PISA2 (Pile Soil Analysis) project. She subsequently joined the University of Cambridge as an Assistant Professor in Civil Engineering, where she was also a member of Fitzwilliam College.
Dr. Abadie currently serves as corresponding member of the TC209, technical advisor for the TAILWIND project, and served as the co-general secretary and lead editor of the International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025), held in Nantes in June 2025.
Mes dernières références
My latest references
Publications
Publications
CLAP - Simplified Model for Multidirectional Cyclic Loading on Offshore Piles. 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG2025), Université Gustave Eiffel, Jun 2025, Nantes, France. 7p.
⟨10.53243/ISFOG2025-25⟩
Conference proceedings of the 5th International Symposium on Frontiers in Offshore Geotechnics - ISFOG 2025. 5th International Symposium on Frontiers in Offshore Geotechnics - ISFOG 2025, Jun 2025, Nantes, France. XII-2866 p., 2025, Les collections de l’IFSTTAR, 978-2-85782-758-0
Fibre Optic Sensing and Satellite Imaging for Early Warning of Catastrophic Ground Subsidence. 2024
⟨10.2139/ssrn.4829064⟩
Modélisation des performances de durée de vie des monopieux éolien offshore. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Jun 2024, Poitiers, France. 8p
Système de détection d‘effondrement de fontis. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Jun 2024, Poitiers, France. 8p
Madabhushi, Christelle Nadine Abadie, James Go, et al.. Evolution of excess pore water pressures around monopiles subjected to moderate seismic loading. Soil Dynamics and Earthquake Engineering, 2024, 176, pp.108316
⟨10.1016/j.soildyn.2023.108316⟩
Seismic excitation of offshore wind turbines and transition piece response. Earthquake Engineering and Structural Dynamics, 2023, 52 (7), pp.2091-2114
⟨10.1002/eqe.3872⟩
Seismic Response of Large Diameter Monopiles for Offshore Wind Turbines in Liquefiable Soils. 9th International SUT OSIG Conference on Innovative Geotechnologies for Energy Transition, Sep 2023, Londres, United Kingdom
Da Silva Burke, Xiaomin Xu, Gianluigi Della Ragione, Emilio Bilotta, et al.. Distributed fibre optic sensing for sinkhole early warning: experimental study. Geotechnique, 2023, 73 (8), pp.701-715
⟨10.1680/jgeot.21.00154⟩
Numerical investigation of fibre-optic sensing for sinkhole detection. Geotechnique, 2023, pp.1-14
⟨10.1680/jgeot.22.00241⟩
Cyclic response of shallow onshore wind turbine foundations in dense sand. 5th International Conference on Geotechnics for Sustainable Infrastructure Development, Dec 2023, Hanoi (Vietnam), Vietnam
Effect of rock density on the response of scour protection to earthquake-induced liquefaction for offshore wind applications. 9th International SUT OSIG Conference on Innovative Geotechnologies for Energy Transition, Sep 2023, London, United Kingdom
Della Ragione, Christelle Nadine Abadie, X. Xu, T. da Silva Burke, T. Möller, et al.. Fibre optic sensing for strain-field measurement in geotechnical laboratory experiments. Géotechnique Letters, 2023, 13 (4), pp.196-203
⟨10.1680/jgele.23.00048⟩
Fiber Optic Sensing for Sinkhole Detection in Cohesionless Soil. 8th Italian National Conference of Researchers in Geotechnical Engineering, Jul 2023, Palermo, Italy. pp.186 - 193
⟨10.1007/978-3-031-34761-0_23⟩
Modeling Lifetime Performance of Monopile Foundations for Offshore Wind Applications. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149 (8)
⟨10.1061/JGGEFK.GTENG-9833⟩
Response of armour rock-scour protection to earthquake-induced liquefaction for offshore wind applications. 10th International Conference on Physical Modelling in Geotechnics (ICPMG), Sep 2022, Daejon, South Korea
Modelling of offshore wind monopile lifetime performance. 4th International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Aug 2022, Austin (Texas, USA), United States
⟨10.17863/CAM.83193⟩
On the use of high-resolution distributed fibre optic sensing for small-scale geotechnical experiments at 1g. 10th International Conference on Physical Modelling in Geotechnics (ICPMG), Sep 2022, Daejon, South Korea
Madabhushi, Stuart Haigh. Dynamic and monotonic response of Monopile Foundations for Offshore wind turbines using centrifuge testing. Bulletin of Earthquake Engineering, 2022, 21 (2), pp.1303-1323
⟨10.1007/s10518-022-01524-7⟩
Madabhushi. Seismic response of offshore wind monopiles in cohesionless soils. 4th International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Aug 2022, Austin (Texas, USA), United States
⟨10.17863/CAM.83192⟩
Anchor Pile Design for Floating Offshore Wind Turbines. 3rd International Conference on Natural Hazards and Infrastructure (ICONHIC), Jul 2022, Athens, Greece
⟨10.17863/CAM.91865⟩
Application of the PISA design model to monopiles embedded in layered soils. Geotechnique, 2020, 70 (11), pp.1067-1082
⟨10.1680/jgeot.20.PISA.009⟩
PISA design model for monopiles for offshore wind turbines: application to a marine sand. Geotechnique, 2020, 70 (11), pp.1048-1066
⟨10.1680/jgeot.18.P.277⟩
Rigid pile response to cyclic lateral loading: laboratory tests. Geotechnique, 2019, 69 (10), pp.863-876
⟨10.1680/jgeot.16.P.325⟩
A method for calibration of the Hyperplastic Accelerated Ratcheting Model (HARM). Computers and Geotechnics, 2019, 112, pp.370-385
⟨10.1016/j.compgeo.2019.04.017⟩
PISA Design Methods for Offshore Wind Turbine Monopiles. Offshore Technology Conference, May 2019, Houston, France
⟨10.4043/29373-MS⟩
Modelling of monopile response to cyclic lateral loading in sand. 8th International Conference, Smarter Solutions for Future Oshore Developments (SUT OSIG), Sep 2017, Londres, United Kingdom
A. P. Beuckelaers, Byron Walter Byrne. A model for nonlinear hysteretic and ratcheting behaviour. International Journal of Solids and Structures, 2017, 120, pp.67-80
⟨10.1016/j.ijsolstr.2017.04.031⟩
Cyclic Lateral Loading of Monopile Foundations in Cohesionless Soils. Géotechnique. University of Oxford [Oxford], 2016. English
Model pile response to multi-amplitude cyclic lateral loading in cohesionless soils. 3rd International Symposium on Frontiers in Oshore Geotechnics (ISFOG), Jun 2015, Oslo, Norway
⟨10.17863/CAM.40861⟩
Cyclic loading response of monopile foundations in cohesionless soils. 8th International Conference of Physical Modelling in Geotechnics (ICPMG), Jan 2014, Perth, Australia
⟨10.17863/CAM.40862⟩